Probing Inflation, Neutrinos, and Dark Energy with the Cosmic Microwave Background: ACTP I and Beyond

Probing Inflation, Neutrinos, and Dark Energy with the Cosmic Microwave Background: ACTP I and Beyond

Jeff McMahon MICHIGAN

ACDM: the Standard Cosmological Model

- 6 parameters:
 - content: $\Omega_{\mathsf{b}},\,\Omega_{\mathsf{c}},\,\Omega_{\Lambda}$
 - Hubble: H
 - reionization: τ
 - inflation: A_s, n_s
- reproduces all observations
 - CMB
 - SN1a
 - BAO
 - BBN
- known unknowns
 - inflation
 - dark energy
 - dark matter
 - neutrino masses

Inflation: conceptual summary

- Problems with the simple big bang model:
 - the relic (monopole) problem
 - flatness problem
 - horizon problem
- Solution:
 - introduce a field φ and potential V(φ) to exponentially expand the universe in the first 10⁻³⁴ s

 Friedman Equation (predicts expansion of the universe)

$$\frac{\ddot{a}}{a} \ = \ -\frac{1}{3M_{\rm pl}^2} \left(\dot{\phi}^2 - V(\phi) \right) \label{eq:alpha}$$

 Inflation (acceleration) happens when

$$V(\phi) > \dot{\phi}^2$$

Inflation: conceptual summary

sketch of a typical model potential

predicts initial perturbations

density (scalar) fluctuations:
$$P_s(k) = \mathbf{A_s} k^{(\mathbf{n_s} - 1 + \frac{1}{2}\alpha_s \ln k)}$$

gravitational wave

(tensor) fluctuations:

$$P_t(k) = \mathbf{A_t} k^{\mathbf{n_t}}$$

- Measuring inflationary parameters tests inflation
 - A_s, n_s, α_s
 - $ightharpoonup r = A_t/A_s, n_t$
 - measuring r would determine energy scale of inflation (this is the holy grail of the CMB)
 - measurements already constrain models

Dark Energy

- Observation: present expansion rate is increasing
- Friedmann Equation

$$\frac{\ddot{a}}{a} = \frac{-4\pi G}{3} \left[\rho_M + \rho_D (1 + 3w) \right]$$

$$w = p/\rho$$

 measuring w₀ ≠ -1 or w_a ≠0 would imply dark energy is a new dynamical field

Parameterize our ignorance:

$$w(a) = w_0 + (1-a)w_a$$

Neutrinos

- Three flavors of neutrinos in the standard model
- Oscillation experiments measure neutrino mass differences
 - $\Delta m_{v23} = 0.05 \text{ eV}$
 - $\Delta m_{y12} = 0.009 \text{ eV}$
- Questions
 - · more flavors?
 - · mass scale?
 - · mass hierarchy?

impact cosmology

K2K

Cosmological Measurements with the CMB

CMB anisotropy

Snapshot of our universe at 380,000 years

carries the imprint of inflationary parameters, the number of neutrino species, and more

Miguel A. Aragon-Calvo et al. borrowed from http://www.sciencemag.org/site/special/vis2011/

Large Scale Structure

Probes our universe from age ~1 to ~13.8 Billion Years

sensitive to dark energy and dark matter (neutrinos), and other parameters.

CMB Power Spectra contains most of the CMB's information

sky map from WMAP

decompose

$$T(\hat{n}) = \sum_{\ell,m} a_{\ell m}^T \; Y_{\ell m}(\hat{n})$$

average

$$C_{\ell} = \sum_{m} |\mathbf{a}_{\ell m}|^2$$

temperature fluctuations trace density perturbations

polarization generated from bulk flows and Thompson scattering

CMB Power Spectrum

from Planck 2015 results papers XI, XII, and XX

Temperature power spectrum

inflationary parameters

neutrino species

Large Scale Structure with Galaxy Clusters and Weak Lensing

CMB gravitational lensing

Leverage through crosscorrelations with optical surveys

halos

Measurements:

also x-ray, galaxy weak-lensing, velocity dispersion, and others

Complementarity with optical measurements of Large Scale Structure

survey type	measurements	complementarity
photometric surveys	clusters	clusters tSZ, scaling relations, mass calibraiton (CMB lensing)
spectroscopic surveys	mater power spectrum / BAO	velocity field (kSZ), calibration
galaxy shear lensing	matter power spectrum	calibration of multiplicative bias

Complementarity with optical measurements of Large Scale Structure

available sky in Chile

survey type	measurements	complementarity
photometric surveys	clusters	clusters tSZ, scaling relations, mass calibraiton (CMB lensing)
spectroscopic surveys	matter power spectrum / BAO	velocity field (kSZ), calibration
galaxy shear lensing	matter power spectrum	calibration of multiplicative bias

The Atacama Cosmology Telescope

Three Cameras and ACT

The Past: 2007-2010 **MBAC**

ACT discovery highlights

The Present: 2012-2015 **ACTPol**

The Future: 2016-2019

2016-2019 Advanced ACTPol (AdvACT)

2020 and beyond CMB-S4

TES basics overview and sensitivity

- Noise contributions
 - photons
 - phonons

- Maximizing sensitivity
 - lower all sources of noise
 - phonons
 - radiation
 - arrays of detectors to boost sensitivity

the ACTPol Receiver

3 optics tubes

- 2@ 150 GHz arrays
- 1 @ 90/150 multichroic

Metamaterial AR silicon lenses

- -low reflectance
- -low dielectric loss

Dilution refrigerator

- 90 mK base
- continous operation

ACTPol Multichroic Polarimeter Array

- New dichroic polarimeters
- Datta et al., JLTP (2014)

sensitive to the 90 GHz and 146 GHz **CMB** bands in each pixel

First Multichroic array deployed, January 2015

ACTPOL STATUS

- 2013: First array (all 146 GHz)
 - background limited
 - consistent with proposed sensitivity
 - first results published
- 2014: Two arrays (all 146 GHz)
 - analysis underway
- **2015**: Multichroic 90/146 GHz
 - First light Feb 2015
 - First fielded multichroic polarimeter array

ACTPol Survey 2013

Four ~ 70 deg² patches

ACTPO

30 deg²

POLARIZATION Lensing (cross-correlation)

Deflection x CIB Cross Spectrum

small scale CMB lensing BB revealed via cross-correlation to CIB.

Van Engelen et al 2014 (ACTPol), Hanson et al 2013 (SPT), POLARBEAR Collaboration 2013, 2014, see also BICEP2, 2014 & BICEP2/Keck/Planck 2015

CLUSTERS LENSING the CMB

3.20; stack of 12,000 CMASS galaxies (SDSS/BOSS)

Madhavacheril et al - PRL 114, 151302, 2015. (ACTPol 2014 D1, D5, D6 fields.)

(data as of 2013)

damping tale

• N_{eff}, n_s, Y_{He}

EE spectrum

improved standard cosmology

Lensing

 ∑m_v, dark energy, dark matter

Large Scale B

damping tale

• N_{eff}, n_s, Y_{He}

EE spectrum

improved standard cosmology

Lensing

 ∑m_v, dark energy, dark matter

Large Scale B

damping tale

• N_{eff}, n_s, Y_{He}

EE spectrum

improved standard cosmology

Lensing

• ∑m_v, dark energy, dark matter

Large Scale B

damping tale

• N_{eff}, n_s, Y_{He}

EE spectrum

improved standard cosmology

Lensing

 ∑m_v, dark energy, dark matter

Large Scale B

damping tale

- N_{eff}, n_s, Y_{He}
- EE spectrum
 - improved standard cosmology

Lensing

• ∑m_v, dark energy, dark matter

Large Scale B

Advanced ACTPol

~ half the sky

three scaled multichroic arrays to cover the 5 frequency bands

+ metamaterial Half Wave Plate

Projected to improve Planck limit on Σm_y by 10x!

Projected to improve LSST's DE FOM by 20x!

Maintaining Moore's Law: focal planes are saturated so must use parallel processing and multiple telescopes.

Stage II ACTPOI Now ~1000 detectors

Stage IV ~2020 - CMB-S4 ~500,000 detectors

CMB-S4: A program to put *O*(500,000) detectors spanning 30 - 300 GHz using multiple telescopes and sites to map ≥70% of sky.

First CMB-S4 Community Meeting (two weeks ago) at the University of Michigan

Collaboration

THANKS!

